ERPpeek Documentation
Release 1.5.3

Florent Xicluna

May 26, 2014

Contents

1 Introduction 3
1.1 Installation 0 e e e e e e e e e e e 3
1.2 Command line arguments o v i it e e e e e e e e e e e e e e e e e e e 3
1.3 INteraCtive USE v v v i e e e e e e e e e e e e e e e e e 4
2 ERPpeek API 7
2.1 Clientand SEIVICES v v i i e e e e e e e e e e e e e e e e 7
22 Modeland Records e e e e 11
2.3 UHHEHES v ot e e e e 13
3 Tutorial 15
3.1 FIrstconnection e e e e e e e e e e e e e e e e e e 15
3.2 Createadatabase e e e e e e e 16
33 FIndthe USers. o i i e e e e 17
34 Create aneW USET . . . v v v v v v e e e e e e e e e e e e e e e e e e 18
3.5 Explorethemodel e e e e 19
3.6 Browsetherecords e e e e 20
4 Developer’s notes 21
4.1 Sourcecode e e e e e 21
4.2 Third-party integration e e e e e e e 21
43 Changes o i e e e e e e e e e 21
5 Indices and tables 29
6 Credits 31
Python Module Index 33

ERPpeek Documentation, Release 1.5.3

A versatile tool for browsing OpenERP data
The ERPpeek library communicates with any OpenERP server (>= 5.0) using the standard XML-RPC interface.

It provides both a fully featured low-level API, and an encapsulation of the methods on Active Record objects. Addi-
tional helpers are provided to explore the model and administrate the server remotely.

The Introduction describes its primary uses as a command line tool or within an interactive shell.
The Tutorial gives an in-depth look at the capabilities.

Contents:

Contents 1

http://doc.openerp.com/
http://doc.openerp.com/v6.1/developer/12_api.html#api

ERPpeek Documentation, Release 1.5.3

2 Contents

CHAPTER 1

Introduction

This section gives the bare minimum to use ERPpeek as a command line tool or within an interactive shell.

1.1 Installation

Download and install the latest release from PyPI:

pip install -U erppeek

1.2 Command line arguments

There are few arguments to query OpenERP models from the command line. Although it is quite limited:

$ erppeek —--help
Usage: erppeek [options] [search_term or_id [search_term_or_id ...]]

Inspect data on OpenERP objects. Use interactively or query a model (-m)
and pass search terms or ids as positional parameters after the options.

Options:
—-version show program’s version number and exit
-h, --help show this help message and exit
-1, —-list list sections of the configuration
——env=ENV read connection settings from the given section
-c CONFIG, --config=CONFIG
specify alternate config file (default: ’'erppeek.ini’)
——server=SERVER full URL to the XML-RPC server (default: http://localhost:8069)
-d DB, —-db=DB database
-u USER, —-user=USER username

-p PASSWORD, —--password=PASSWORD

password, or it will be requested on login
-m MODEL, --model=MODEL

the type of object to find

-f FIELDS, —--fields=FIELDS
restrict the output to certain fields (multiple allowed)
-i, —--interact use interactively; default when no model is queried
-v, ——-verbose verbose
S #

http://pypi.python.org/pypi/ERPpeek

ERPpeek Documentation, Release 1.5.3

Example:

$ erppeek -d demo -m res.partner —-f name -f lang 1
"l’lame n , "langll
"Your Company","en_US"

$ erppeek -d demo -m res.groups —-f full_name ’‘id > 0
"full_name"

"Administration / Access Rights"
"Administration / Configuration"
"Human Resources / Employee"
"Usability / Multi Companies"
"Usability / Extended View"
"Usability / Technical Features"
"Sales Management / User"

"Sales Management / Manager"
"Partner Manager"

1.3 Interactive use

Edit erppeek. ini and declare the environment(s):

[DEFAULT]

scheme = http

host = localhost
port = 8069
database = openerp
username = admin
options = -c /path/to/openerp-server.conf —--without-demo all
[demo]

username = demo
password = demo
[local]

scheme = local

Connect to the OpenERP server:

erppeek —--list
erppeek ——-env demo

This is a sample session:

>>> model (" res.users’)
<Model ’'res.users’>

>>> model (' res.users’) .count ()
4
>>> model ("ir.cron’) .read([’active = False’], ’"active function’)

[{"active’: False, ’'function’: ’"run_mail_scheduler’, ’'id’: 1},
{"active’: False, ’'function’: ’'run_bdr_scheduler’, ’id’: 2},
{"active’: False, ’function’: ’scheduled_fetch_new_scans’, ’"id’: 9}]

>>> #

>>> client.modules ('delivery’)

{’uninstalled’: [’delivery’, ’'sale_delivery_report’]}

>>> client .upgrade (' base’)

1 module(s) selected

4 Chapter 1. Introduction

ERPpeek Documentation, Release 1.5.3

42 mo
to
to
to
to

>>> #

dule (s)
upgrade
upgrade
upgrade
upgrade

to process:
account
account_chart
account_tax_include
base

Note: Use the ——verbose switch to see what happens behind the scene. Lines are truncated at 79 chars. Use —vv
or —vvv to print more.

More details in the Tutorial section.

1.3. Interactive use

ERPpeek Documentation, Release 1.5.3

6 Chapter 1. Introduction

CHAPTER 2

ERPpeek API

The library provides few objects to access the OpenObject model and the associated services provided by the OpenERP
XML-RPC APIL

The signature of the methods mimic the standard methods provided by the osv. osv OpenERP class. This is intended
to help the developer when developping addons. What is experimented at the interactive prompt should be portable in
the application with little effort.

* Client and Services
— Objects
Advanced methods
XML-RPC Services
— Manage addons
e Model and Records
e Utilities

2.1 Client and Services

The Client object provides thin wrappers around XML-RPC services and their methods. Additional helpers are
provided to explore the models and list or install OpenERP addons.

class erppeek .Client (server, db=None, user=None, password=None, verbose=False)
Connection to an OpenERP instance.

This is the top level object. The server is the URL of the instance, like http://localhost :8069. If server
is an openerp module, it is used to connect to the local server (>= 6.1).

The db is the name of the database and the user should exist in the table res.users. If the password is not
provided, it will be asked on login.

classmethod Client . from_config (environment, verbose=False)
Create a connection to a defined environment.

Read the settings from the section [environment] in the erppeek.ini file and return a connected
Client. See read_config () for details of the configuration file format.

Client.create_database (passwd, database, demo=False, lang="en_US’, user_password="admin’)
Create a new database.

The superadmin passwd and the database name are mandatory. By default, demo data are not loaded and lang
is en_US. Wait for the thread to finish and login if successful.

http://doc.openerp.com/v6.1/developer/12_api.html#api
http://doc.openerp.com/v6.1/developer/12_api.html#api

ERPpeek Documentation, Release 1.5.3

Client.login (user, password=None, database=None)
Switch user and (optionally) database.

If the password is not available, it will be asked.

Note: In interactive mode, a method Client .connect (env=None) exists, to connect to another environment,
and recreate the globals ().

Note: In interactive mode, when connected to the local OpenERP, the get_pool(db_name=None) function
helps to grab a model registry for the current database. The cursor factory is available on the registry as

get_pool () .db.cursor ().

2.1.1 Objects

Client.search (obj, domain, offset=0, limit=None, order=None, context=None)
Filter the records in the domain, return the ids.

Client.count (0bj, domain, context=None)
Count the records in the domain.

Client.read (0bj, domain, fields=None, offset=0, limit=None, order=None, context=None)
Wrapper for client .execute (obj, ‘read’, [...]1, ("a’, 'b’)).

The first argument obj is the model name (example: "res.partner")
The second argument, domain, accepts:
e [("name’, ’'=’, ’'mushroom’), (’'state’, ’'!=’, ’'draft’)]
* ["name = mushroom’, ’'state != draft’]
* [1
e alistofids [1, 2, 3] orasingleid 42
The third argument, fields, accepts:
* asingle field: ' first_name’
e atuple of fields: (' street’, ’city’)
* aspace separated string: ' street city’
e aformatspec: ' $ (street)s % (city)s’
If fields is omitted, all fields are read.
If domain is a single id, then:
* return a single value if a single field is requested.
e return a string if a format spec is passed in the fields argument.
* else, return a dictionary.

If domain is not a single id, the returned value is a list of items. Each item complies with the rules of the previous
paragraph.

The optional keyword arguments offset, limit and order are used to restrict the search. The order is also used
to order the results returned. Note: the low-level RPC method read itself does not preserve the order of the
results.

8 Chapter 2. ERPpeek API

ERPpeek Documentation, Release 1.5.3

Client.perm_read (obj, ids, context=None, details=True)
Lookup metadata about the records in the ids list. Return a list of dictionaries with the following keys:

*id: object id

ecreate_uid: user who created the record
ecreate_date: date when the record was created
ewrite_uid: last user who changed the record
*write_date: date of the last change to the record

exmlid: XML ID to use to refer to this record (if there is one), in format module .name (not available
with OpenERP 5)

If details is True, the create_uid and write_uid contain the name of the user.

Client .write (0bj, ids, values, context=None)
Update the record(s) with the content of the values dictionary.

Client.create (0obj, values, context=None)
Create a new record for the model. The argument values is a dictionary of values for the new record. Return the
object id.

Client.copy (0bj, id, default=None, context=None)
Copy a record and return the new id. The optional argument default is a mapping which overrides some values
of the new record.

Client .unlink (obj, ids, context=None)
Delete records with the given ids

Client .models (name="")
Return a dictionary of models.

The argument name is a pattern to filter the models returned. If omitted, all models are returned. Keys are camel
case names of the models. Values are instances of Model.

The return value can be used to declare the models in the global namespace:
>>> globals () .update(client .models('res.”))

Client .model (name, check=True)
Return a Mode1 instance.

The argument name is the name of the model. If the optional argument check is False, no validity check is
done.

Client .keys (0bj)
Wrapper for Model . keys () method.

Client.fields (obj, names=None)
Wrapper for Model . fields () method.

Client.field (0bj, name)
Wrapper for Model . field () method.

Client.access (0obj, mode="read’)
Wrapper for Model .access () method.

2.1. Client and Services 9

ERPpeek Documentation, Release 1.5.3

2.1.2 Advanced methods

Those methods give more control on the OpenERP objects: workflows and reports. Please refer to the OpenERP
documentation for details.

Client.execute (0bj, method, *params, **kwargs)
Wrapper around ob ject .execute RPC method.

Argument method is the name of an osv.osv method or a method available on this obj. Method params are
allowed. If needed, keyword arguments are collected in kwargs.

Client.execute_kw (0bj, ids, params, kwargs=None)
Wrapper around object .execute_kw RPC method.

Does not exist if server is OpenERP 5.

Client .exec_work£flow (0bj, signal, obj_id)
Wrapper around object .exec_workflow RPC method.

Argument obj is the name of the model. The signal is sent to the object identified by its integer 1d obj_id.

Client.report (obj, ids, datas=None, context=None)
Wrapper around report . report RPC method.

Client.render_report (0bj, ids, datas=None, context=None)
Wrapper around report . render_report RPC method.

Does not exist if server is OpenERP 5.

Client.report_get (report_id)
Wrapper around report . report_get RPC method.

Client .wizard (name, datas=None, action="init’, context=None)
Wrapper around wizard.create and wizard.execute RPC methods.

If only name is provided, a new wizard is created and its id is returned. If action is not "init", then the
action is executed. In this case the name is either an id or a string. If the name is a string, the wizard is created
before the execution. The optional datas argument provides data for the action. The optional confext argument
is passed to the RPC method.

Removed in OpenERP 7.

2.1.3 XML-RPC Services

The nake XML-RPC services are exposed too. There are five services. The db and the common services expose few
methods which might be helpful for server administration. Use the dir () function to introspect them. The three
other services should not be used directly: they are in the private namespace, starting with _ because their methods
are wrapped and exposed on the C1ient object itself. Please refer to the OpenERP documentation for more details.

Client.db
Expose the db Service.

Examples: Client.db.list () orClient.db.server_version () RPC methods.

Client.common
Expose the common Service.

Example: Client.common.login_message () RPC method.

Client._object
Expose the object Service.

10 Chapter 2. ERPpeek API

http://doc.openerp.com/v6.1/developer/12_api.html#api
http://doc.openerp.com/v6.1/developer/12_api.html#api
http://doc.openerp.com/v6.1/developer/12_api.html#api

ERPpeek Documentation, Release 1.5.3

Client._report
Expose the report Service.

Client._wizard
Expose the wizard Service.

Removed in OpenERP 7.

class erppeek . Service (server, endpoint, methods, verbose=False)
A wrapper around XML-RPC endpoints.

The connected endpoints are exposed on the Client instance. The server argument is the URL of the server
(scheme+host+port). If server is an openerp module, it is used to connect to the local server. The endpoint
argument is the name of the service (examples: "object", "db"). The methods is the list of methods which
should be exposed on this endpoint. Use dir (.. .) on the instance to list them.

2.1.4 Manage addons

These helpers are convenient to list, install or upgrade addons from a Python script or interactively in a Python session.

Client .modules (name="", installed=None)
Return a dictionary of modules.

The optional argument name is a pattern to filter the modules. If the boolean argument installed is True, the
modules which are “Not Installed” or “Not Installable” are omitted. If the argument is False, only these
modules are returned. If argument installed is omitted, all modules are returned. The return value is a dictionary
where module names are grouped in lists according to their state.

Client.install (*modules)
Press the button Install.

Client .upgrade (*modules)
Press the button Upgrade.

Client .uninstall (*modules)
Press the button Uninstall.

Note: It is not recommended to install or upgrade modules in offline mode when any web server is still running: the
operation will not be signaled to other processes. This restriction does not apply when connected through XML-RPC.

2.2 Model and Records

In addition to the thin wrapper methods, the C1ient provides a high level API which encapsulates objects into Active
Records.

The Mode is instantiated using the C1ient .model () method or directly through camel case attributes.
Example: both client .model (' res.company’) and client .ResCompany return the same Model.

class erppeek .Model (client, model_name)
The class for OpenERP models.

keys ()
Return the keys of the model.

2.2. Model and Records 11

http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://www.martinfowler.com/eaaCatalog/activeRecord.html

ERPpeek Documentation, Release 1.5.3

fields (names=None)
Return a dictionary of the fields of the model.

Optional argument names is a sequence of field names or a space separated string of these names. If
omitted, all fields are returned.

field (name)
Return the field properties for field name.

access (mode="read’)
Check if the user has access to this model.

Optional argument mode is the access mode to check. Valid values are read, write, create and
unlink. If omitted, the read mode is checked. Return a boolean.

browse (domain, offset=0, limit=None, order=None, context=None)
Return a Record ora RecordList.

The argument domain accepts a single integer id, a list of ids or a search domain. If it is a single integer,
the return value is a Record. Otherwise, the return value is a RecordList.

get (domain, context=None)
Return a single Record.

The argument domain accepts a single integer id or a search domain, or an xm1_1id. The return value is
a Record or None. If multiple records are found, a ValueError is raised.

create (values, context=None)
Create a Record.

The argument values is a dictionary of values which are used to create the record. The newly created
Record is returned.

_get_external_ids (ids=None)
Retrieve the External IDs of the records.

Return a dictionary with keys being the fully qualified External IDs, and values the Record entries.

class erppeek .RecordList (model, ids)

A sequence of OpenERP Record.

It has a similar API as the Record class, but for a list of records. The attributes of the RecordList
are read-only, and they return list of attribute values in the same order. The many2one, one2many and
many2many attributes are wrapped in RecordList and list of RecordList objects. Use the method
RecordList.write to assign a single value to all the selected records.

read (fields=None, context=None)
Wrapper for the Record. read () method.

Return a RecordList if fields is the name of a single many2one field, else return a 1ist. See
Client.read () for details.

perm_read (context=None)
Wrapper for the Record.perm_read () method.

write (values, context=None)
Wrapper for the Record.write () method.

unlink (context=None)
Wrapper for the Record.unlink () method.

_external_id
Retrieve the External IDs of the RecordList.

12

Chapter 2. ERPpeek API

ERPpeek Documentation, Release 1.5.3

Return the list of fully qualified External IDs of the RecordList, with default value False if there’s
none. If multiple IDs exist for a record, only one of them is returned.

class erppeek .Record (model, id)
A class for all OpenERP records.

It maps any OpenERP object. The fields can be accessed through attributes. The changes are immediately
sent to the server. The many2one, one2many and many2many attributes are wrapped in Record and
RecordList objects. These attributes support writing too. The attributes are evaluated lazily, and they are
cached in the record. The Record’s cache is invalidated if any attribute is changed.

_external id
Retrieve the External ID of the Record.

Return the fully qualified External ID of the Record, with default value False if there’s none. If multiple
IDs exist, only one of them is returned (randomly).

_send (signal)
Trigger workflow signal for this Record.

copy (default=None, context=None)
Copy a record and return the new Record.

The optional argument default is a mapping which overrides some values of the new record.

perm_read (context=None)
Read the metadata of the Record.

Return a dictionary of values. See Client .perm_read () for details.

read (fields=None, context=None)
Read the fields of the Record.

The argument fields accepts different kinds of values. See Client .read () for details.

refresh ()
Force refreshing the record’s data.

unlink (context=None)
Delete the current Record from the database.

write (values, context=None)
Werite the values in the Record.

2.3 Utilities

erppeek.lowercase (s)
Convert to lowercase with dots.

>>> lowercase (' ResCompany’)
"res.company’

erppeek.mixedcase (s)
Convert to MixedCase.

>>> mixedcase (' res.company’)
"ResCompany’

erppeek.issearchdomain (arg)
Check if the argument is a search domain.

2.3. Utilities 13

ERPpeek Documentation, Release 1.5.3

Examples:
e [("name’, =", "mushroom’), (’'state’, ’'!=’, ’'draft’)]
e ["name = mushroom’, ’state != draft’]

* [

erppeek.searchargs (params, kwargs=None, context=None)
Compute the ‘search’ parameters.

erppeek . format_exception (type, value, tb, limit=None, chain=True)
Format a stack trace and the exception information.

This wrapper is a replacement of t raceback. format_exception which formats the error and traceback
received by XML-RPC. If chain is True, then the original exception is printed too.

erppeek.read config (section=None)
Read the environment settings from the configuration file.

The config file erppeek.ini contains a section for each environment. Each section provides parameters for
the connection: host, port, database, user and (optional) password. Default values are read from
the [DEFAULT] section. If the password is not in the configuration file, it is requested on login. Return a
tuple (server, db, user, password or None). Without argument, it returns the list of configured
environments.

erppeek.start_openerp_services (options=None, appname=None)
Initialize the OpenERP services.

Import the openerp package and load the OpenERP services. The argument options receives the command
line arguments for openerp. Example: "-c /path/to/openerp-server.conf —--without-demo
all". Return the openerp module.

14 Chapter 2. ERPpeek API

CHAPTER 3

Tutorial

This tutorial demonstrates some features of ERPpeek in the interactive shell.

It assumes an OpenERP server is installed. The shell is a true Python shell. We have access to all the features and
modules of the Python interpreter.

Steps:

e First connection

* Create a database

¢ Find the users

e Create a new user
* Explore the model
e Browse the records

3.1 First connection

The server is freshly installed and does not have an OpenERP database yet. The tutorial creates its own database demo
to play with.

Open the ERPpeek shell:

$ erppeek

It assumes that the server is running locally, and listens on default port 806 9.
If our configuration is different, then we use arguments, like:

$ erppeek —--server http://192.168.0.42:8069

On login, it prints few lines about the commands available.

$ erppeek
Usage (some commands) :

models (name) # List models matching pattern

model (name) # Return a Model instance

model (name) .keys () # List field names of the model

model (name) .fields (names=None) # Return details for the fields
#

Return details for the field
model (name) .browse (domain)

()
()

model (name) .field (name)
()

model (name) .browse (domain, offset=0, limit=None, order=None)

15

ERPpeek Documentation, Release 1.5.3

Return a RecordList

rec = model (name) .get (domain) # Get the Record matching domain
rec.some_field # Return the value of this field
rec.read (fields=None) # Return values for the fields
client.login (user) # Login with another user
client.connect (env) # Connect to another env.

client .modules (name) # List modules matching pattern

client.upgrade (modulel, module2, ...)
Upgrade the modules

As we’ll see later, the most interesting method here is probably model () which returns a Mode1 object with nice
wrappers.

And it confirms that the default database is not available:

Error: Database ’openerp’ does not exist: []

Though, we have a connected client, ready to use:

>>> client

<Client ’'http://localhost:80694#()’>
>>> client.server_version

"6.17

>>> #

3.2 Create a database

We create the database "demo™" for this tutorial. We need to know the superadmin password before to continue. This
is the admin_passwd in the openerp-server. conf file. Default password is "admin™".

Note: This password gives full control on the databases. Set a strong password in the configuration to prevent
unauthorized access.

>>> client.create_database (' super_password’, ’‘demo’)
Logged in as ’'admin’

>>> client

<Client "http://localhost:8069%#demo’>

>>> client.db.list ()

["demo’]

>>> client.user

"admin’

>>> client.modules (installed=True)

{"installed’: [’'base’, '"web’, ’'web_mobile’, "web_tests’]}
>>> len(client.modules () ["uninstalled’])

202

>>> #

Note: Create an erppeek.ini file in the current directory to declare all our environments. Example:

[DEFAULT]
host = localhost
port = 8069

16 Chapter 3. Tutorial

ERPpeek Documentation, Release 1.5.3

[demo]
database = demo
username = Jjoe

Then we connect to any environment with erppeek —-env demo or switch during an interactive session with
client.connect ('demo’).

3.3 Find the users

‘We have created the database "demo" for the tests. We are connected to this database as ’ admin’.
Where is the table for the users?

>>> client

<Client ’"http://localhost:8069#demo’ >

>>> models (' user’)

{"ResUsers’: <Model ’'res.users’>, ’'ResWidgetUser’: <Model ’res.widget.user’>}
>>> client.ResUsers

<Model ’res.users’>

We can reach the same model using the model () method too.

>>> model (' res.users’)

<Model ’'res.users’>

>>> model (' res.users’) is client.ResUsers
True

But we don’t know anything about the fields of this model. Fortunately, the Mode1 class provides methods to intro-
spect the model.

>>> print (model (' res.users’) .keys())
["action_id’, ’'active’, ’company_id’, ’company_ids’, ’context_lang’,
"context_tz’, ’'date’, ’'groups_id’, ’id’, ’'login’, ’'menu_id’, ’‘menu_tips’,
"name’, ’'new_password’, ’password’, ’signature’, ’user_email’, ’'view’]
>>> model (' res.users’) .field (' view’)
{"digits’: [16, 2],
’fnct_inv’: ’_set_interface_type’,
"fnct_inv_arg’: False,
"fnct_search’: False,
" func_obj’: False,
"function’: ’_get_interface_type’,
"help’: 'OpenERP offers a simplified and an extended user interface. If\
you use OpenERP for the first time we strongly advise you to select the\
simplified interface, which has less features but is easier to use. You\
can switch to the other interface from the User/Preferences menu at any\
time.’,
"selection’: [[’simple’, ’'Simplified’], [’extended’, ’"Extended’]],
"store’: False,
’string’: ’"Interface’,
"type’: ’'selection’}
>>> #

Let’s examine the admin’ user in details.

>>> model (' res.users’) .count ()
1
>>> admin_user = model ('res.users’) .browse (1)

3.3. Find the users 17

ERPpeek Documentation, Release 1.5.3

>>> admin_user.groups_id

<RecordList ’'res.groups,[1l, 2, 3]’'>

>>> admin_user.groups_id.name
["Access Rights’, ’'Configuration’, ’Employee’]

>>> admin_user.groups_id.full_name
["Administration / Access Rights’,
"Administration / Configuration’,
"Human Resources / Employee’]

>>> admin_user.perm_read()

{’ create_date’: False,
'create_uid’: False,

rid’: 1,
"write_date’: 2012-09-01 09:01:36.631090",
'write_uid’: [1, ’"Administrator’],

"xmlid’: ’"base.user_admin’}

3.4 Create a new user

Now we want a non-admin user to continue the exploration. Let’s create Joe.

>>> model (' res.users’) .create ({’login’: ’joe’})
Fault: Integrity Error

The operation cannot be completed, probably due to the following:
- deletion: you may be trying to delete a record while other records still reference it
- creation/update: a mandatory field is not correctly set

[object with reference: name - name]
>>> #

It seems we’ve forgotten some mandatory data. Let’s give him a name.

>>> model (' res.users’) .create({’login’: " joe’, ’'name’: ’"Joe’})
<Record ’'res.users, 3>

>>> joe_user = _

>>> joe_user.groups_id.full_name

["Human Resources / Employee’, ’'Partner Manager’]

The user Joe does not have a password: we cannot login as joe. We set a password for Joe and we try again.

>>> client.login (’ joe’)
Password for ’joe’:

Error: Invalid username or password
>>> client.user

"admin’

>>> joe_user.password = ’bar’
>>> client.login (’ joe’)
Logged in as ' joe’

>>> client.user

4 joef

>>> #

Success!

18 Chapter 3. Tutorial

ERPpeek Documentation, Release 1.5.3

3.5 Explore the model

We keep connected as user Joe and we explore the world around us.

>>> client.user

’ joel

>>> all_models =
>>> len (all_models)

92

Among these 92 objects, some of them are read-only, others are read-write.

non-empty models.

sorted (models () .values (),

>>> # Read-only models
>>> len([m for m in all_models if not m.access ('write’)])

44
>>> #

>>> # Writable but cannot delete

>>> [m for m in all_models if m.access('write’)

[<Model ’'ir.property’>]

>>> #

>>> # Unreadable models
>>> [m for m in all models if not m.access (' read’)]

[<Model
<Model
<Model

>>> #

’ir.actions.todo’ >,
"ir.actions.todo.category’>,
"res.payterm’ >]

key=str)

and not m.access (‘unlink’)]

>>> # Now print the number of entries in all (readable) models
>>> for m in all_models:
mcount =
if not mcount:

126
1941
658
32
207
432

63
185

72

253
51

m.access () and m.count ()

continue

print (' ¢4d ¢s’ % (mcount, m))

<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model
<Model

rir.
"ir
"ir.
rir.
"ir
"ir
rir.
'ir
"ir
Tir
"ir
"ir
Tir
"ir
"ir
rir.
"ir.
rir.
rir.
"ir
"'res
"res
"'res
"res

actions.act_window’ >

.actions.act_window.view’ >

actions.act_window_close’ >
actions.actions’>

.actions.report.xml’ >
.config_parameter’>

cron’ >

.mail_server’>

.model’ >

.model.access’>
.model.data’>
.model.fields’>
.module.category’>
.module.module’ >
.module.module.dependency’ >

rule’ >
ui.menu’ >
ui.view’ >
ul.view_sc’>

.values’>

.bank’>
.company’ >
.country’ >
.country.state’>

We can also filter the

3.5. Explore the model

19

ERPpeek Documentation, Release 1.5.3

[IsN
[ee]

<Model ’res.
<Model ’res.
<Model ’res.
<Model ’res.
<Model ’res
<Model ’res
<Model ’res
<Model ’res
<Model ’res

KN
O O

<Model ’'res
<Model ’res
<Model ’res

[R S G I e S e e

>>> #

currency’ >
currency.rate’ >
groups’ >

lang’ >

.partner’>
.partner.address’>
.partner.bank.type’ >
.partner.bank.type.field’ >
.partner.title’>

<Model ’res.
.users’ >
.widget’ >
.widget.user’>

request.link’>

>>> # Show the content of a model

>>> config_params

>>> config_params.

[{rid": 1, ’key':
{rid": 2, ’key’:
{rid": 3,

= model ("ir.config_parameter’) .browse([])

read()
"web.base.url’, ’'value’:

"database.create_date’, ’'value’:

"key’: ’"database.uuid’,

"value’: "52fc9630-f49e-2222-e622-08002763afeb’ }]

3.6 Browse the records

Query the "res.country" model:

>>> model (' res.country’) .keys ()

["address_format’,

>>> model (' res.country’) .browse ([’ name like public’
<RecordList ’'res.country, [41, 42, 57, 62, 1lle,
>>> model (' res.country’) .browse ([’ name like public’]

["Central African

"code’, ’"name’]

Republic’,

"Congo, Democratic Republic of the’,

’Czech Republic’,

"http://localhost:8069"},
72012-09-01 09:01:12"},

’Dominican Republic’,

"Kyrgyz Republic (Kyrgyzstan)’,
"Macedonia, the former Yugoslav Republic of’]

>>> model (" res.country’) .browse ([’ code > Y],
[{"code’: "YE’", "id’': 247,
{’code’: 'YT’, ’id’': 248,
{’code’: "YU’, ’"id’': 249,
{’code’: "zA’", ’id’': 250,
{’code’: "zZM’", ’'id’': 251,
{’code’: "ZR’", ’'id’': 252,
{"code’: "2ZW', ’"id’": 253,

>>> #

... the tutorial is done.

Jump to the ERPpeek API for further details.

"name’ : ’'Yemen’},
"name’ : "Mayotte’},
"name’ : ’Yugoslavia’},
"name’ : ’South Africa’},
"name’ : ' Zambia’},
"name’ : ’Zaire’},
"name’ : ' Zimbabwe’ }]

order='code ASC’) .read(’code name’)

20

Chapter 3. Tutorial

CHAPTER 4

Developer’s notes

4.1 Source code

¢ Source code and issue tracker on GitHub.

» Continuous tests against Python 2.6 through 3.4 and PyPy, on Travis-CI platform.

4.2 Third-party integration

This module can be used with other Python libraries to achieve more complex tasks.
For example:
* write unit tests using the standard unittest framework.
» write BDD tests using the Gherkin language, and a library like Behave.
* build an interface for OpenERP, using a framework like Flask (HTML, JSON, SOAP, ...).

4.3 Changes

4.3.1 1.5.3 (2014-05-26)

¢ Change command line output to CSV format.
* Translate command line output according to LANG environment variable.
* Pretty print the list of modules.

* Do not report Module (s) not found when trying to install a module already installed.

4.3.2 1.5.2 (2014-04-12)

* Return an appropriate error message when the client is not connected.

* Two similar Record from different connections do not compare equal.

Set the PGAPPNAME used for the PostgreSQL connection, in local mode.

¢ Close PostgreSQL connections on exit, in local mode.

21

https://github.com/florentx/erppeek
https://github.com/florentx/erppeek/issues
http://travis-ci.org/florentx/erppeek
http://about.travis-ci.org/
http://docs.python.org/library/unittest.html
http://packages.python.org/behave/gherkin.html#gherkin-feature-testing-language
http://packages.python.org/behave/
http://flask.pocoo.org/

ERPpeek Documentation, Release 1.5.3

* Implement the context manager protocol.

4.3.3 1.5.1 (2014-03-11)

* When switching to a different environment, with Client.connect, invalidate the previous connection to
avoid mistakes (interactive mode).

* Avoid cluttering the globals in interactive mode.
* Close socket to avoid ResourceWarning on Python 3.

* The get_pool helper is only available in interactive mode and if the client is connected locally using the
openerp package.

¢ Clear the last exception before entering interactive mode, only needed on Python 2.

* Fix the searchargs domain parser for compatibility with Python 3.4.

4.3.4 1.5 (2014-03-10)

» Advertize the Model and Record paradigm in the usage printed in interactive mode: it’s far more easier to
use, and available since 1.0.

¢ In interactive mode, only inject four global names: client, models, model and do. Other methods are
available on Model and Client instances (read search count keys fields access ...).

* Always clear the Record cache when an arbitrary method is called on this Record.
¢ Implement == comparison for Record instances.

* New computed attributes Record._external_idand RecordList._external_id, and new method
Model._get_external_ids (ids=None).

 Better parsing of dates in search terms.
* Reject invalid == operator in search terms.

* Now the str(...) of aRecord is always retrieved with name_ get. Previously, the output was sometimes
inconsistent.

* Fix TypeError when browsing duplicate ids.
¢ Fix error with Model.get ([’ field = value’], context={...}).
* Workaround an issue with some models: always pass a list of ids to read.

 Test the behaviour when read is called with a False id: it happens when browsing a RecordList for
example.

4.3.5 1.4.5 (2013-03-20)

» Extend Model . get to retrieve a record by xm1_1id.
* Fix AttributeError when reading a mix of valid and invalid records.
* Fix dir () on Record and RecordList to return all declared fields, and do not report id field twice.

¢ Fix a crash with built-in OS X readline on Python 2.5 or 2.6.

22 Chapter 4. Developer’s notes

ERPpeek Documentation, Release 1.5.3

4.3.6 1.4.4 (2013-03-05)

* Remove deprecated Record.client.
¢ Fix compatibility with Python 3.

* Add optional argument check to the Client .model method to bypass the verification in some cases, used
to speed up the read methods.

* Do not crash when mixing non-existing and existing records: return always False for non-existing records.

4.3.7 1.4.3 (2013-01-10)

¢ Compatible with OpenERP 7.
 Set the database name as thread attribute to print it in the log file (local mode only).

* Do not try to access private methods through RPC when resolving attributes of the C1ient or any Record or
RecordList.

4.3.8 1.4.2 (2012-12-19)

* Add the get_pool helper when connected using the openerp library.
* Remove the leading slash on the server option, if present.

* Do not try to access private methods through RPC when reading attributes of the model (. ..).

4.3.9 1.4.1 (2012-10-05)

* Fix reading manyZ2one attribute on RecordList object in local mode.
* Fix occasional issue on login when switching database on the same server.

* Optimization: do not propagate the call to RecordList.write or RecordList.unlink if the list is
empty.

¢ Clear the Record cache on Record._send.

* Expose the method Record. refresh to clear the local cache.

4.3.10 1.4 (2012-10-01)

e New: direct connection to a local server using the openerp library. Use scheme = local and options
= -c /path/to/openerp-server.conf in the configuration.

4.3.11 1.3.1 (2012-09-28)

¢ Fix method Record._send.

4.3. Changes 23

ERPpeek Documentation, Release 1.5.3

4.3.12 1.3 (2012-09-27)

* Implement exception chaining in format_exception to print the original traceback.

¢ Return a list of Record objects when reading the reference field of a RecordList object.

* Fix reading attributes on RecordList with holes or gaps.

* Accessing an empty one2many or many2many attribute on a Record returns a RecordList.

* New method Model . get to retrieve a single Record. Itraises a ValueError if multiple records are found.

* New method Record._send to send a workflow signal.

4.3.13 1.2.2 (2012-09-24)

e Accept Record and RecordList attribute values when writing or creating records.

* Improve the methods write and create of Record and RecordList objects to manage one2many and
many2many fields.

* Return a Record when reading a reference field. Implement the create and write methods for these
fields.

¢ Remove undocumented alias Record.update.

4.3.14 1.2.1 (2012-09-21)

* Add the special operators =i1ike, =ilike, =2 and fix parsing of inequality operators >= and <=.
* Fix the RecordList . id attribute, and deprecate RecordList._ids.

* Deprecate the Record.client attribute: use Record._model.client.

* Accessing an empty many2one attribute on a RecordList now returns a RecordList.

* Fix TypeError when browsing non-existent records.

4.3.15 1.2 (2012-09-19)

 Catch some malformed search domains before sending the RPC request.

 Preserve dictionary response when calling non standard Record methods.

» Expose the helper format_exception which formats the errors received through XML-RPC.

e Support XML-RPC through HTTPS with scheme = https inthe erppeek.ini configuration file.

* Print an error message when client .upgrade (.. .) does not find any module to upgrade.

4.3.16 1.1 (2012-09-04)
e When using arbitrary methods on Record, wrap the id in a list [id]. It fixes a recurring issue with poorly
tested methods.
* Do not read all records if the RecordList is empty.
* Fix the bad behaviour when switching to a different database.

¢ Order the results when using read method with order= argument.

24 Chapter 4. Developer’s notes

ERPpeek Documentation, Release 1.5.3

* Reading attributes of the sequence <RecordList ’sea.fish, [2, 1, 2]’> will return an ordered se-
quence of three items. Previously it used to return an unordered sequence of two items.

* Acceptthe % (.. .) s formatting for the fields parameter of the Record. read and the RecordList.read
methods too.

¢ Add a tutorial to the documentation.

4.3.17 1.0 (2012-08-29)

* Add the test suite for Python 2 and Python 3.

* Implement 1en () for RecordList objects.

» Connect to the server even if the database is missing.
* Expose the method Client.db.get_progress.

e New method Client.create_database which wraps together Client.db.create and
Client.db.get_progress.

* Save the readline history in ~/ . erppeek_history, only if the file already exists.
* Enable auto-completion using r1completer standard module.

* Raise an AttributeError when assigning to a missing or read-only attribute.

4.3.18 0.11 (2012-08-24)

* Enhance the Model .browse () method to accept the same keyword arguments as the Client .search ()
method.

* Fix the verbose level on Client .connect ().
* Fix the Record. copy () method.
* Fix the Record.perm_read () method (workaround an OpenERP bug when dealing with single ids).

* Drop the ——search argument, because the search terms can be passed as positional arguments after the options.
Explain it in the description.

¢ Fix the shell command. Request the password interactively if it’s not in the options and not in the configuration
file.

4.3.19 0.10 (2012-08-23)

Add the ——verbose switch to log the XML-RPC messages. Lines are truncated at 79 chars. Use —vv or
—vvv to truncate at 179 or 9999 chars respectively.

Removed the ——write switch because it’s not really useful. Use Record.write () orclient.write ()
for example.

Stop raising RuntimeError when calling Client .model (name) . Simply print the message if the name does
not match.

Fix RecordList.read () and Record.read () methods to accept the same diversity of fields argu-
ments as the Client .read () method.

RecordList.read () and Record. read () return instances of RecordList and Record for relational
fields.

4.3.

Changes 25

ERPpeek Documentation, Release 1.5.3

* Optimize: store the name of the Record when a relational field is accessed.

* Fix message wording on module install or upgrade.

4.3.20 0.9.2 (2012-08-22)

¢ Fix Record.write () and Record.unlink () methods.

* Fix the caching of the Model keys and fields and the Record name.

4.3.21 0.9.1 (2012-08-22)

¢ Fix client .model () method. Add models () tothe globals () in interactive mode.

4.3.22 0.9 (2012-08-22)

¢ Add the Active Record pattern for convenience. New classes Model, RecordList and Record. The
Client.model () method now returns a single Model instance. These models can be reached using camel
case attribute too. Example: client .model (' res.company’) and client .ResCompany return the
same Model.

* Refresh the list of modules before install or upgrade.

e List all modules which have state not in (’uninstalled’, ’‘uninstallable’) when calling
client.modules (installed=True).

¢ Add documentation.

4.3.23 0.8 (2012-04-24)

e Fix help(client) and repr(...).

* Add basic safeguards for argument types.

4.3.24 0.7 (2012-04-04)

¢ Fix RuntimeError on connection.

4.3.25 0.6 (2012-04-03)

* Support Python 3.
* Return Client method instead of function when calling client .write or similar.

* Fix the case where read () is called with a single id.

26 Chapter 4. Developer’s notes

ERPpeek Documentation, Release 1.5.3

4.3.26 0.5 (2012-03-29)

e Implement Client.__getattr__ special attribute to call any object method, like client .write (obj,
values). This is somewhat redundant with client .execute (obj, 'write’, values) and its in-
teractive alias do (obj, ’'write’, values).

e Add ——write switch to enable unsafe helpers: write, create, copy and unlink.
* Tolerate domain without square brackets, but show a warning.

* Add long options ——search for -s, ——interact for —i.

4.3.27 0.4 (2012-03-28)

* Workaround for sys.excepthook ignored, related to a Python issue.

4.3.28 0.3 (2012-03-26)

* Add —-configand —-version switches.
* Improve documentation with session examples.

* Move the project from Launchpad to GitHub.

4.3.29 0.2 (2012-03-24)

¢ Allow to switch user or database: methods client.login and client.connect.
e Allow context= keyword argument.

e Add access (...) method.

* Add % (.. .) s formatting for the fields parameter of the read (. ..) method.

* Refactor the interactive mode.

¢ Many improvements.

¢ Publish on PyPL

4.3.30 0.1 (2012-03-14)

* Initial release.
* Online documentation: http://erppeek.readthedocs.org/

* Source code and issue tracker: https://github.com/florentx/erppeek

4.3. Changes 27

http://bugs.python.org/issue12643
http://erppeek.readthedocs.org/
https://github.com/florentx/erppeek

ERPpeek Documentation, Release 1.5.3

28

Chapter 4. Developer’s notes

CHAPTER 5

Indices and tables

* genindex

e search

29

ERPpeek Documentation, Release 1.5.3

30

Chapter 5. Indices and tables

CHAPTER 6

Credits

Authored and maintained by Florent Xicluna.

Derived from a script by Alan Bell.

31

ERPpeek Documentation, Release 1.5.3

32

Chapter 6. Credits

Python Module Index

e
erppeek, 7

33

	Introduction
	Installation
	Command line arguments
	Interactive use

	ERPpeek API
	Client and Services
	Model and Records
	Utilities

	Tutorial
	First connection
	Create a database
	Find the users
	Create a new user
	Explore the model
	Browse the records

	Developer's notes
	Source code
	Third-party integration
	Changes

	Indices and tables
	Credits
	Python Module Index

